4IR Implications Part 3: Energy Transition

This is the third post in the series considering the left-field consequences of the 4th Industrial revolution (4IR). Not only are there several technology trends leading to breakthroughs in productivity but also there are drivers pushing changes in approaches to energy. This is a long post, so apologies in advance, but there’s quite a lot to say on the topic.

If you were in Surrey and was asked “does the world need any more cars or need a better standard of living”, you might be tempted to answer no. If, however, you were in the poor parts of south east Asia or Africa you might instead agree that raising living standards is good idea. To do that output per person must go up and that will require technology, know-how, organisation, and energy. As living standards rise demand for domestic energy rises too.

Development has implications for energy demand, supply, and emissions. For capitalism to continue to provide improvements to people’s lives different economic drivers will be required if we are to address environmental constraints. Some will come from technological advances, some by regulation and some by changing desires of consumers. In short, we need a transition in our approach to energy.

I’m going to address energy transition in four ways: energy substitution, energy efficiency, decarbonisation, and decommissioning.

Many members of the Bestem Network are involved in the oil and gas industry. Please don’t read this post as a prediction for oil prices, it’s not. It’s also not about the short-term outlook for the oil industry. It doesn’t deal with the decades of piped gas and LNG and the abundant shale gas available. Instead it explores inescapable (if inconvenient) long-term trends. Guided by the insights from members of the Bestem Network, I am concerned to know if I am investigating along the right track more than demonstrating “being right”.

For oil veterans “Energy Transition” is firmly on the agenda in 2021. Many people I talk to are experiencing declines in their current business. Some are starting to believe the value of resources and capabilities that drove business success in the past should now be reconsidered. For them, it’s tempting to term any new line of business as energy transition – because it is a transition away from the energy business they knew. This phrasing doesn’t aid analysis. That’s why I decided to consider this topic in four dimensions.

There’s a lot of resistance and denial about change in the Oil and Gas industry. People can’t comprehend that skills, resources and assets that seemed so valuable three years ago, may no longer be so. Oil companies are writing off reserves, there is talk of stranded assets. Of course, there are people whose interests are served by changing the public discourse and some of the “illogical” conclusions of proponents of the new order may be “wrong”. Perhaps all parties have the same priorities, but in a different order? If enough people subscribe to a new paradigm, they can sway the outcome. Watch out, history only calls this way once.

What’s the data say?

If you haven’t read the BP statistical report on energy and oil – you’ve missed out. LINK

For my oil and gas colleagues, please note the graph above is for energy usage and therefore does not include consumption of oil and gas for other purposes such as chemical feedstock. These other uses account for about 15-20% of consumption. LINK

Perhaps petrochemicals will become a relatively more important use for oil. There are important developments including the configuration of the new Yanbu refinery that hint at this. Perhaps this market will be dominated by the middle east. LINK.

By far the most important sources of energy are Oil, Gas and Coal. Our modern world is built on their consumption which has increased 10x since 1900. In many ways the history of the 20th century is the history of oil. I am currently reading Daniel Yergin’s book the New Map, it’s a great reminder of how mega-politics is tied up with energy. LINK

Figures from the USA indicate that approx. 40% of energy is consumed in the home (heating, lighting, powering equipment, etc.), 30% is used for transport (private cars, lorries, boats, planes etc.), and 30% is used in industrial settings (steel, cement, manufacturing, mining, oil production, etc.). LINK

As other parts of the world catch up with the lifestyles of the Europeans and North Americans sheer weight of numbers could mean another 100x increase in energy consumption is on the horizon unless something changes.

Unfortunately, this poses two problems: Firstly, consumable resources are finite causing scarcity and price rises which slow global development, and secondly it appears that the emitted gasses are inconveniently killing us all (albeit quite slowly). LINK

Apparently we must emit no more than 100GigaTonnes of CO2 before the end of the century. LINK. In 2018 we emitted 40MegaTonnes. LINK. Carbon concentration in the atmosphere stands at 400 parts per million (up 50% from where we stood in 1850). At the current rate, excluding growth, we hit our upper limit in about 25 years, leaving us 55 Years where we must emit nothing at all. So, we must grow and use more energy but emit less carbon.

On top of this, advances in power semi-conductors, computerisation and battery technologies are making electricity more interesting. The use of oil, coal, and gas to create electrical energy that will then be transformed into stored potential and then to kinetic energy is less efficient than directly generating electricity in the first place. This is especially true when the price of new generating equipment is benefitting from economies of learning and scale. Since 2010, utility-scale solar PV power cost has declined 82% LINK and LINK

The upshot of all of this is that:

  • The human population of the world cannot safely advance until its growing energy requirements are met by means other than oil, gas and coal
  • Not only must we not increase the rate of CO2 production, we must reduce it

Combine this with some trends:

  • There is a growing desire to use electrical power
  • Measurement, algorithms, and power-switching leads to reduces losses in electrical power systems
  • Cost of generating electricity from the sun and wind is reducing
  • It’s possible to capture CO2 as it is produced so it is not released
  • It’s possible to remove CO2 already present in our atmosphere
  • There are other fuels that don’t produce CO2 when they burn

All this points to: growth in renewable generation; a stop in demand for oil, gas, and coal for electricity generation; reduction in the tasks that need doing; ways to use less energy to perform tasks; moves to reduce the production and release of carbon dioxide; and ways to remove the darned stuff from the air if at all possible. This is neatly summed up in categories Energy Substitution, Energy Efficiency and Decarbonisation. And will inevitably lead to Decommissioning.

Energy Substitution

Perhaps this is the first true energy substitution? We’ve had fuel augmentation before – adding coal on top of wood, and oil on top of coal. Sure, there was a little displacement, but mainly it was new growth that accounted for the new fuel and we continued to consume the old stuff pretty much at the same rate as before. The method for conversion from chemical to mechanical-power did, however, change – steam, internal combustion, turbine. This time is different as we’re transitioning on three fronts simultaneously: the primary method of capturing energy; displacement of established uses; and finding new (more efficient) ways to consume.

The benefit of electro-mechanical conversion

Direct use of electric drives to replace fuel combustion is occurring in both transport and in industrial settings. There are some areas that prove harder to electrify – especially when heat is the desired end-product. These include steel making, cement manufacture, distilling, cooking, and domestic heating.

There are positive drivers pushing the direct use of electricity in mechanical drives. This method provides excellent controllability using complex sensors, computer control and high-power semiconductors. It also provides excellent scalability – very small motors up to massive monsters. Electricity is also relatively easy to distribute.

The downside to electricity has always been difficulties related to is use in temporary, new, or moving applications. This relates to portability, transport, and storage. Battery technology is an issue as is gaining a connection and maintaining grid reliability. Users tend to fall back on diesel-based generation for both portability and reliability.

In transportation (especially aviation) weight is an important factor because, unlike fuel tanks, batteries do not get lighter when they are empty.

The business drivers of electric energy adoption:

  • Falling cost of direct electricity generation from wind and solar
  • Increasing battery performance
  • Requirements for fine-control and monitoring driven by computer control enable new solutions
  • Opportunities for efficiency from system level monitoring and prediction coupled with intelligent distributed control

Obstacles are:

  • Cost of infrastructure for grid establishment
  • Time to establish connection
  • Difficulty in transporting stored energy
  • Difficulty of use in mobile applications (battery storage and weight)

The societal drivers are:

  • De-carbonisation
  • Energy security

Under the current business rules, when positive drivers are strong enough and the obstacles small, users will naturally substitute. To maximise the societal drivers (or public good) regulation changes may be required to tip business decisions. These can come in the form of subsidies, penalties or license-to-operate. The decision is dynamic – what doesn’t make sense today, may do tomorrow (note the 82% fall in the price of solar over the last decade). The more that electrification occurs: the more technology is developed and the more the price falls; the more experience we gain and the less risky the outcome becomes. As demand and volumes fall for older technologies, they become more expensive and less convenient. Over time tipping points are reached and business decisions become easier to make. I explained this dynamic in relation to electric cars here LINK

There is a great piece by Tim Harford examining the shift from steam to electrical drives at the turn of the 20th Century. It provides a framework for understanding the drivers of the elongated time lines required for a transition. LINK

Scale Matters

Renewable generation used to be a cottage industry, but scale matters and it’s starting to swing the economics decidedly in favour of renewables.

Solar power is a factory manufacturing and construction problem. Site operation is pretty much zero intervention. Factors that have driven down cost will continue to do so with manufacturing costs decreasing and per-cell-output rising. While it’s unlikely to rival Moore’s law, research into cooling, focussing and reflected energy is promising a 10x improvement in output, which will compound the learning economies we’ve already seen. Solar is already the cheapest way to make power, and result of development may mean that we see a further 10x fall in price per MW generated.

Scale in wind power matters. GE are trialling a 12MW turbine in Rotterdam LINK It won’t be the last.

Standardised production

Unlike oil and gas platforms each turbine is essentially the same as the last one. There is no top-side processing to be designed and no process modification during its life. Wind has already achieved the standard, reusable, modular offshore design that Oil and Gas have been talking about for so long and never managed. This will lead to reduced requirement for engineering design and economies of scale and learning for installation and operation.

Oil and gas have been very wasteful for decades by creating bespoke engineering solutions on a field-by-field basis. There are many apocryphal stories of cost escalation in oil and gas facility engineering. Including one operator specifying 20 shades of yellow for sub-sea valves, which may or may not be true. But here’s a link that makes me think maybe it is LINK

Large generation assets promise cheap, reliable power distributed by a common connection. That’s a welcome development because small-scale generation posed unexpected public-good problems. In several underdeveloped countries central generation is unreliable, and users are tempted to go off-grid. Unfortunately, this has a detrimental effect on the public grid subsidy and leads to a death spiral for national utilities resulting in even worse service for citizens.

Energy Efficiency

There’s not a huge amount to say about energy efficiency other than its about stopping waste which means: for heating more insulation; for energy conversion making less heat and noise; and for moving parts less friction and less weight. Overall, it means stopping doing what’s not really needed – such as unnecessary journeys by better planning and routing, and not heating or lighting spaces no one is occupying.

This leads to energy reduction technology using predictive algorithms, sensing and fine control of systems.

Examples include google reducing energy consumption of its data centres by 30% by predicting the weather. LINK

High-power semiconductors enabling DC power transmission and reduced line-losses.

And there is tons of work going on using big data and AI to reduce logistics costs. LINK

There are activities that can not only be made more efficient but also completely replaced by new technologies. For instance, additive manufacture and additive construction may displace some of the need for energy used making materials such as cement and steel, thereby increasing construction efficiency and reducing energy requirements and carbon emissions.

Decarbonisation

I’m not a climate scientist but if enough smart people tell me there is a problem, I tend to believe them. Though, in my view, this is not about saving the planet – the Earth will be fine – it is about preserving an environment within the tight tolerances required for the human life we’ve come to expect.

For climate change, my reading of the situation is that we have a problem related to imbalances of gasses and particles in the atmosphere. Energy substitution and energy efficiency will naturally reduce carbon emissions in some areas. It may help continued growth of middle classes across Asia and Africa without a proportionate increase in carbon emission. However, this won’t be enough as there are still areas where electrification is not yet practical, and efficiency gains not enough.

This leads to two approaches to decarbonisation: chemical fuels which are not carbon based; and methods to rid the atmosphere of un-eliminated carbon emissions.

Alternative fuels maintain the thermal cycle but don’t produce CO2. The two most often noted are Hydrogen and Nuclear. I would not want either if it were not for the carbon argument (in almost every application it’s a compromise) but they may be necessary as sub-optimal answers until better ones can be found. Hydrogen wins on portability and Nuclear on reliability and capacity (and portability in applications like marine warfare and space exploration).

Its unfortunate reactions with steel aside, hydrogen is interesting as replacement fuel in domestic settings where pipes, compression and metering etc are available. Like copper phone lines, it is unlikely that any country that does not already have the legacy infrastructure would invest in it now.

Capture and storage

Talking of legacy, the oil and gas folks are pretty good at drilling holes, moving fluids, and running large pipelines. They also have some bits of kit in the North Sea (and pipes running to and from them) that it would be great to find a use for these when the oil stops. There is a lot of interest in finding ways to pump CO2 through the system and store it in underground spaces vacated by the oil that was pumped out.

I can see why you’d want to do that if you owned the infrastructure, and it’s an interesting short-term measure but it doesn’t seem like this would be a scalable solution to on-going growth and just like oil wells run dry, storage facilities will eventually get full. The idea that we have to add a complete industry with scale and complexity of oil and gas solely to deal with the emissions of other industries adds a layer of inefficiency and cost that, if allocated correctly, would make them even more open to replacement by alternatives.

Fuel Cells

The use of hydrogen in fuel cells makes little sense in the long run if battery and super-capacitor storage improves. Generating electricity, to convert to hydrogen, to transport under high pressure, to convert back to electricity seems absurd to me.

In my view, hydrogen is not part of the endgame of energy transition. It may be an interim step where direct electrification and transport/time-shift of stored electrical-energy is not yet practical. It does make sense to accelerate decarbonisation when an alternative has not been established, but it is inferior to many other forms of chemical energy except for its emission properties.

Hydrogen is more viable while legacy resources and assets exist in abundance such as low-cost infrastructure, fabrication facilities, mechanical engineering, and process engineering. It would require a lot of careful handling under pressure, temperature and, combustion. Luckily it can be consumed (less well and with modification) by legacy assets such as internal combustion, jet engines and domestic boilers.

Nuclear

The same arguments apply for Nuclear energy, but not so strongly and even less for fusion. Nuclear fuel is abundant and (with care) easy to transport and energy conversion is centralised. Energy is, however, still derived from the release and recapture of heat and the physical movement and containment of molecules and (and particles) under extreme conditions.

Decommissioning

When thinking about decommissioning my mind normally turns to removing infrastructure from the North Sea at the cessation of oil and gas operations. To be fair with an almost £80Bln prize at stake in the UK alone it’s not surprising that there is interest. LINK

But there is much more. If we are going to move to a low carbon world based on electrification, then there are many more assets that need to be decommissioned or refreshed. Ranging from filling stations, pipelines, car plants, car scrappage, domestic boilers, lorries etc.

If we combine this with the other changes in technology coming from the fourth industrial revolution, we are also going to find new uses for car parks, high streets, out of town retail centres and the list goes on.

It goes without saying though, that we will have to make sure we can decommission without emitting carbon dioxide in the process.

Implications

Implications: Energy Substitution

Even now, without any change in the incentives there are many areas where renewable generation is the best commercial choice. It is only going to get more so as more breakthroughs occur in generation and grid-level and portable energy storage.

The demise of internal combustion engines will have knock-on effects for manufacturers of components including radiators, hoses, vibration dampers, seals, drive belts, spark plugs, lead-acid batteries, gearboxes, and pumps.  Innovators may want to consider how to reskill and serve power engineering, distribution systems and electric control. Additionally, they may want to consider which ancillary manufacturing assets will be affected (either interrupting supplies or creating opportunities for low-cost acquisitions). Innovation is also likely to be available in any area which relies on diesel or other fuel oil to create electricity or provide non-transport related rotary motion.

Will cars and solar panels be manufactured and sold as consumer white-goods and semi-conductors? In which case they are going to come from Taiwan, Korea, and China.

As turbines become common place and large ones most economical, they will become like the Airbus A-380. There will only be a few manufacturers. They may not be operators. Unlike an oil-field that starts as a risky proposition but then provides a natural monopoly, offshore wind generation will become routine and be open to competition. Capital may be cheaper, but the returns will be lower. The bloat of the oil and gas industry cannot continue to be supported.

Implications: Energy Efficiency

Anything that can be done to increase the amount of useful energy output from the energy we consume will help. This comes in two forms – reducing the things that need to be done and improving the way they are done if they are unavoidable.

Innovation will come from increasing the utilisation of energy through sharing, careful planning, insulation, and conversion efficiency. Search out unoccupied space in containers, trucks, and aircraft. Plan who goes where when and in what sequence. Predict when power will really be needed and when it’s not. Any process that gets hot when heat is not its primary objective should be examined.

Transmission of energy is inefficient, as is standby generation. Expect to see DC supply, smart grids, community generation and local storage/recharge solutions emerge. Expect the need for AC power to diminish – semiconductors and high-frequency switching is much more efficient, light weight and controllable.

Look for opportunities to displace concrete and steel in manufacturing processes, perhaps finding a new use for solid-state carbon fibre or graphene and for additive manufacture.

Implications: Decarbonisation

In the absence of market distortions there is no business case for decarbonisation. But the world needs it to happen. This will require a combination of intervention policies (subsidies, penalties, regulation) and a willingness for consumers to pay extra for low-carbon products.

Programs to capture carbon at source and sequester it in some form add to the costs of production and only make sense if the alternative (in the form of penalties or sale of credits) tip the balance. The cost of carbon-inclusive production will provide opportunities to innovate in no-carbon alternatives at price points not currently viable, once these products start being adopted, learning and scale economies will kick in to speed adoption.

As carbon pricing becomes widely adopted across industries, innovation is likely. From understanding sources of carbon in supply chains (and engineering it out), planning for low carbon production and finding alternative ways to operate that do not produce carbon.

Fundamental research opportunities are still available for atmospheric scrubbing and short-term opportunities may be available around capture and storage of carbon from industry.

Implications: Decommissioning

Unfortunately, no-one wants to pay for decommissioning. The activity does not create productive assets so there is no return on investment and traditional business cases don’t work. It’s only done because it’s mandated and because there is a sense of responsibility for the environment (which may have brand and license implications).

Contracts will be let to the lowest price operators; innovation will therefore be required to reduce the cost to enable profit while bidding at the lowest price. All Seas managed to do this with their vessels – low cost but, by moving first with large capital assets and capacity to dominate demand thereby deterring competition. They can charge a low price but well above their cost resulting in healthy profits. LINK

When it comes to decommissioning infrastructure such as high voltage AC power transmission lines, domestic boilers and old cars, efficiency in the operation will be important, but so will re-use of the materials. Removing old infrastructure and scrapping cars may not sound like a gold mine, but perhaps it is. Literally.

Decommissioning old power stations, nuclear or conventional, is risky business where quality will count. There are stringent standards for Nuclear and projects that will last for decades. Conventional can be a little more “cowboy”. With wide scale decommissioning perhaps new rules and regulations will be needed to avoid this sort of tragedy? LINK

Points to Ponder

As of January 2021 ExxonMobil was valued at about $175 per barrel of oil equivalent from upstream production over the past nine months. French nuclear generator EDF is valued at $280 per barrel of oil equivalent produced over the same period. Spain’s Iberdrola, with its high renewables output, trades at $1,200 per barrel of oil equivalent produced. LINK

There is some evidence that there may be a squeeze on oil supply in the short term, and there may be a last hurrah of the oil and gas industry, but the writing seems to be on the wall.

We are likely to see more policy interventions around CO2. Business cases need to be dynamic and make space for emerging scenarios. The direction of pricing is clear but magnitude and timing are yet to resolve.

I fear for my friends in Aberdeen and Stavanger who expect to be involved in renewable generation. Despite these places being repositories of skills and expertise, I doubt there will be labour shortages significant enough to drive a search for talent – and the inflated labour prices and high-cost working practices are unlikely to be appealing.

Areas such as decarbonisation are likely to be subsidised. Engineering skills bases exist in the North West ship building areas, in Teesside, the Welsh Valleys as well as the South East coast of Norway, southern Sweden, Northern Germany, industrial Belgium and Denmark. There is no obvious reason that governments will bestow subsidies on the oil-rich provincial towns, and there is no unusual depth in high-power electrical engineering skills or modular manufacture that creates a pulling force. Look to Airbus and RollsRoyce for a hint on which locations may be subsidised.

Energy production is turning into a 4th industrial age process now. Over time energy will become essentially free to western consumers (in the absence of new taxes) and will become affordable for developing countries providing the elements required to swell the educated middle classes

Tax and Trade

In the UK fuel is taxed at the point of consumption, domestic electricity is taxed at a lower rate than petrol. North Sea oil has its own tax and royalty regime (on a field-by-field basis). When electricity moves cars and oil stops pumping, these tax revenues will need to be replaced. Expect changes to the tax system.

Globally this tax issue is one of national wealth, balance of trade and currency. Many economies are supported by petro-dollars. That may cease. Even if impoverished populations can benefit from cheaper energy, it is still likely that there will be political tensions within and between many countries.

As we continue to electrify there will be increased demand for copper, nickel and rare earth metals. These extractive industries are out of keeping with 4th industrial age processes. Perhaps we will see a boom in resource rich areas such as Africa and south America until such time as we can harness graphene and ceramic based super conductors.

Business models that are based on bespoke designs, complex operations, resource scarcity and speculative exploration are likely to be replaced by ones supported by more standardisation, predictable un-manned operation, with steady, predictable returns. This will lead to reduction in man-power requirements, creativity, and variability. Cost structures and operating characteristics (and associated returns) across the energy industry are likely to evolve to resemble those of other utilities such as water.

Large oil and gas companies are currently moving to re-invent themselves as renewable energy companies. They have spotted the trend, but there is no guarantee that they will bring the right behaviours to the table to be able to operate in the way that will be required. Their strong balance sheets, engineering skills and ability to operate in harsh environments internationally may provide them with a well-financed head start.

During the 1980s RACAL was a military radio, radar and missile guidance provider. They were highly experienced in complex frequency hopping radio systems. This gave them a well-financed head start into a new industry, just like oil companies have today. Racal were well placed to develop mobile phone technology.  

However, Racal was the wrong place create a consumer marketing and general-public-facing service. By 1991, as the technology became mainstream, the Racal board took the wise decision to float the division and spin it out as a standalone company that could develop its own culture. RACAL ceased to be independent when it was acquired by Thales in 2000. Vodafone, the division it spun out has done rather well. LINK

Perhaps we will see the renewables divisions of Shell, BP and Statoil spin out and compete with Iberdrola if they want to be utilities or Siemens, GE and RollsRoyce if they want to make turbines. Unlike Vodafone, their spin outs will be competing with established successful companies with long track records. It may not work out as well as it did for Racal shareholders.

Innovation is Key

In whatever way this pans out there is one thing clear – there are lots of unknowns and lots of variables. The only way to survive will be to be vigilant of the macro forces and constantly innovate to evolve offerings as events reveal themselves.  

While we were sleeping – Oil 1.4 and Solar

It’s been very busy since the Network Dinner in September. I will post an update on the discussion later this month.

In the mean time I’ve been busy working on innovation – more of that later – but I recently came across two interesting items that I think might be worth sharing.

Firstly the FT ran a special issue talking about Oil and Gas 4.0 [Link]. It’s good to see that this term is being widely applied – and a big change from when I started to talk about it a few years ago.

I wrote an article in March 2016 when I claimed that Oil and Gas were really at 2.5 while industry was going 4.0 [Link] I was concerned about the lack of urgency and technology progress. I also called out the contribution of Collette Cohen as being one of the few that seemed to get technology. She is now director of the Oil and Gas Technology Centre.

The OGTC were referred to in this article [Link]

In October, the non-profit Oil & Gas Technology Centre (OGTC) in Aberdeen in Scotland, announced the next phase in its autonomous robots project with Total of France, which is developing what it calls the world’s first offshore work-class robot. The first phase of the work saw Austrian firm Taurob create a robot to conduct visual inspections at Total’s Shetland gas plant and the Alwyn gas platform in the North Sea. A second-generation version will have a stronger chassis and a heavy-duty arm that will lift objects and turn valves. It will be tested by Total and Equinor of Norway, the research initiative’s new partner.

“A lot of our work on hazardous environments focuses on whether we can avoid sending people into those areas in the first place,” says Stephen Ashley, head of OGTC’s digital transformation solution centre.

Another article coined the phrase Oil and Gas 1.4 which is a clever take on the combination of an old-age industrial organisation embracing new digital technologies within its core business. I think I like this term better than my 2.5 one.

This article [link] makes the point that the new technology is prevalent in some areas of the business, but that the new frontier for production might be the application of technology to find economic ways of enabling enhanced oil recovery. 

Unmanned rigs are now commonplace, complex operations are monitored from a single control room, leaks and emissions of greenhouse gases can be identified by drones and satellites, removing much of the need for direct human inspection. Numerous technologies are being applied in ways that can reduce cost and improve productivity.

The key question, however, is whether the digital revolution can answer the sector’s biggest challenge: how to secure future production. Oil demand is not falling. There may be 7m electric vehicles on the world’s roads but there are also 1.2bn vehicles with internal combustion engines.

[…]

One answer must be for companies to make the most of assets they already hold. Across the world the typical recovery rate from a conventional oil or gasfield is only 35 per cent.Even after decades of production giant fields such as Prudhoe Bay in Alaska or Ghawar in Saudi Arabia still contain billions of barrels of oil. Recovery rates have slowly risen and provinces such as the North Sea, originally expected to close at the end of the last century, continue to produce oil and gas. In Norway recovery rates are typically 50 per cent — well above the world average but still leaving half the resource base undeveloped.

The point at which recovery becomes uneconomic, ie when the cost of enhanced recovery is greater than the value of the oil, is a serious constraint.

What I’ve found really interesting this year is how irrelevant the oil and gas industry seems to have become down here in London. What I mean by that is that Oil and Gas seemed to be at the crux of things in a way that, say, copper mining and concrete production wasn’t. It used to be a cool place to play with technology, travel the world and to make a bunch of money. I think those days may be over (though some predict a spike in prices around 2025). Now no-one here cares about Oil and Gas at all.

Where I am seeing a lot of action and excitement is around Solar and Wind. I thought for a while it was just me becoming aware, but now I’m onvinced that it was a sea change and it really is picking up. And the cost-curve of Solar is particularly striking.

I urge you to have a look at Tim Harford’s article on Solar [link]. As always he has an ability to grasp the implications of what he sees in ways that other’s don’t. He looks a PV cells – how in 1980 Solar was about $100 per watt ($10.000 to light a light bulb). It is now already below $0.25 / watt and falling. Utility scale production is now looking to provide generation at below $0.015 per KW/h. [link]

The thing about Solar Panels is that they are a pure manufacturing play. Once created they just sit there and make energy. No moving parts, no plat to really operated as such. We have been, and continue to be, very good at manufacturing standard products in standard factories.

Sometimes the learning curve is shallow and sometimes it is steep, but it always seems to be there.

In the case of PV cells, it’s quite steep: for every doubling of output, cost falls by over 20%.

And this matters because output is increasing so fast: between 2010 and 2016 the world produced 100 times more solar cells than it had before 2010.

Batteries – an important parallel technology for solar PV – are also marching along a steep learning curve.

The learning curve creates a feedback loop that makes it harder to predict technological change. Popular products become cheap and cheaper products become popular.

And any new product needs somehow to get through the expensive early stages. Solar PV cells needed to be heavily subsidised at first – as they were in Germany for environmental reasons.

More recently China seems to have been willing to manufacture large quantities in order to master the technology.

Watch this space, it’s just getting cheaper, better and faster. This is where the action is – I just don’t know how to play the opportunity yet.

 

Get out of the way of digital Chris

A friend of mine runs operations for one of the larger players in the North Sea. He has a chap who works for him. For the purposes of anonymity, I’ll call him Digital Chris.

Digital Chris is a very valuable person. He’s what’s referred to as a “Barrel Chaser” he’s the trouble shooter, the ideas man, the guy that gets things done. Digital Chris adds thousands of barrels of production each year. Production that would otherwise be locked up due to process constraints, lost through shut-in’s and trips or lost through delays getting things back on-line. Digital Chris probably contributes a few million pounds of cash that drops straight to the bottom line.

It’s odd then that not everyone is like Digital Chris and that people like him are so rare. I remember there was a chap I met who worked at Elf in the 1990’s who I’ll now refer to as “Digital Martyn”. I hope he won’t mind me name checking him – Martyn Beardsell – https://www.linkedin.com/in/martyn-beardsell-5639aa1/

Digital Martyn worked as a reservoir engineer and seemed to be able to use software tools he had available to construct answers to geological modelling and reservoir production questions in ways that others couldn’t. He could take information from many different disciplines, combine them and use it to solve sub-surface puzzles in new and imaginative ways.

Digital Martyn and Digital Chris are digital pioneers, a different type of digital twin if you will. They may not think of themselves this way but they are. The problem-solving results they achieve are not only orders of magnitude faster & better than whole departments of people, but I’d go as far as to say that they spot and solve problems to unlock opportunities that would otherwise be lost forever in the fog of bureaucracy.

What’s interesting now is that if you walk into a G&G department they are no longer divided by discipline as they were once: Geology, Petrophysics, Geophysics, Reservoir (with geochemists and bathymetry not knowing where to report); instead they are organised as “Subsurface” and divided by business objective Exploration, Development and Production.  Computing power and data was the underpinning of this change. All companies now organise their G&G departments and behave in the way that Digital Martyn pioneered 25 years ago. I suspect 25 years from now all operations groups will organise and behave in ways that Digital Chris, and those like him, are pioneering today.

The BBC reported that there will be a requirement for 10,000 digital workers in Oil and Gas in the next 20 years. http://www.bbc.co.uk/news/uk-scotland-north-east-orkney-shetland-44067949 On average that means each of the 50 or so operators need to find 10 Digital Chris clones each year. My friend has only found one in the last 15 years.

If Martyn and Chris are twins separated by 25 years and, if Digital Chris is a pioneer, there are three things the wise oil company executive should do: Learn to spot more digital pioneers; develop and grow them; and help them be successful in their roles.

To help you spot them, here are the traits of a digital pioneer:

  1. Is technically advanced in area of specialty
  2. Is a creative problem-solver
  3. Maintains broad overview of situation
  4. Prioritises attention to areas that maximise value
  5. Digs into extreme detail when required
  6. Tests Hypotheses with data, discarding ideas when necessary
  7. Develops networks and creates social and political capital
  8. Naturally works across organisational boundaries
  9. Can’t stand bureaucracy and form filling

 

Once you’ve found them here’s a few suggestions to help them develop and grow

  1. Develop tools to gauge the business impact of decisions
  2. Create common language to enable discussions on relative value
  3. Share strategic vision and what will be considered “good”
  4. Reward the identification and quantification of problems
  5. Provide unfiltered access to whatever information is needed, even if only needed for curiosity
  6. Encourage diversity of approach and non-conforming ideas
  7. Ensure that safety is not compromised by new ideas without killing the idea-generation process itself

As they develop, it’s your responsibility to help them be successful in their roles

  1. Prevent nay-sayers from using trivial detail to thwart progress
  2. Align interests by addressing the gap between process-driven functions like finance, procurement and IT and those working in the white-heat of operational time-frames
  3. Deploy technology that reduces information-friction and promotes transparency
  4. Try to work with the minimum of forms, reports, emails or meetings

 

It’s going to be a long process to re-equip the whole workforce with digital skills, some of that will happen naturally as new workers enter the industry. There will be a need for conversion to new ways of working to be established within existing workers as well.  The challenge is going to be attracting new people with digital skills, embracing those new skills and associated ways of working (letting them flourish and keeping work meaningful and not frustrating) then combining them with the know-how from established practices in the industry.

In the short run we’re going to need to work in teams – and teams with diversity of thought and approach. Not the sort of team I’ve seen (and experienced) where all new digital methods are pooh-poohed. Not the type of “team” where the old guard try to reprogramme the progressive new digital guys to adopt the way it’s done here – and the digital guys opt out and are replaced with IT people (who haver IT skills but are not Digital, see traits above). The IT guys end up going off on IT projects for their own sake and impose so many restrictions on technology adoption by the operations teams that the whole thing falls flat and fails.

Be Digital!

 

 

 

 

 

 

 

 

Industrial strategy revisited

Today, May 21st 2018, the UK Prime Minister, Theresa May is scheduled to give a speech regarding AI and the use of health data. This is the start of the revelation of the UK government’s new industrial strategy. From my vantage point, I see this political response to be part of the Fourth Industrial Revolution. My post was written (and published) before this speech and is a naughty attempt by me to see how well her speech writers know their political history. I have framed this in the terms of the Oil and Gas industry, Mrs. May’s speech will address Health Tech, but maybe some of the broader themes will resonate.

Industrial strategy is a something that the government hasn’t really majored on since the days of Anthony Wedgewood Benn.  They do say that history doesn’t repeat – but it does echo. This post draws on the “White Heat of Technology Revolution” speech given by Harold Wilson in October 1963.

To provide some context, Mr. Wilson’s speech was given during the early days of the 3rd industrial revolution. At this point we were seeing the start of computerisation and automation. Within a few short years we would see: the end of the typing pool; the death of the statistical time-and-motion studies; ledgers would be replaced with spreadsheets; and punch cards with magnetic tape with hard disk drives.

Unlike Mr. Wilson, who basically suggested that we better get on board with computerisation or we are all doomed; it appears that Mrs. May’s speech is going to suggest that AI can help cure cancer. Maybe it’s true that you can catch more wasps with honey than with vinegar. Mr Wilson’s political approach led, eventually, to the “Winter of Discontent” and the inevitable computerisation/automation led to the mass unemployment and the industrial upheaval of the 1970’s. Perhaps there are “interesting times” ahead?

I’ve taken some liberties by extracting parts of the 55 year old speech and reframed them. Perhaps you, too, will hear the echoes of history and see the implication of the change that we now face. For a transcript of the full speech have a look at this link

White Heat of Technology in Oil and Gas

(with apologies to Harold Wilson)

Now, this morning, I present this blog post to the world, the oil industry and the 4th Industrial Revolution, because the strength, the solvency and influence of the oil and gas industry which some still think depends upon nostalgic illusions or upon sub-sea posturing – these things are going to depend in the remainder of this century to a unique extent on the speed with which we come to terms with the world of change.

There is no more dangerous illusion than the comfortable doctrine that the world owes us a living […..] From now on The Oil Industry will have just as much influence on energy supply as we can deserve. We have no accumulated reserves on which to live.

It is, of course, a cliché that we are living in a time of such rapid scientific change that our children are accepting as part of their everyday life things which would have been dismissed as science fiction a few years ago. We are living perhaps in a more rapid revolution than some of us realise. The period from 2018 until the mid 2020’s will embrace a period of technical change particularly in production methods, greater than the whole industrial revolution and period of computerisation that went before.

It is only a few years since we first talked about digitalisation […..] Let us be frank about one thing. It is no good trying to comfort ourselves with the thought that digitalisation need not happen here; that it is going to create so many problems that we should perhaps put our heads in the sand and let it pass us by. Because there is no room for Luddites in our industry. If we try to abstract from the digitalisation age, the only result will be that the Oil Industry will become a stagnant backwater, pitied and condemned by the rest of commerce.

[….]

Because we have to recognize that digitalisation is not just one more process in the history of computerisation, if by computerisation we mean the application of technology to eliminate the need for data gathering and analysis by middle-management. The essence of modern digitalisation is that it replaces hitherto unique human functions of: risk assessment; judgement, decision making in the face of uncertainty; and ultimately action taking. Now digitalisation has reached the point where it commands facilities of memory and of judgement far beyond the capacity of any human being or group of human beings who have ever lived.

[….]

Or listen to the problem in another way. We can now set a machine learning system so that, without the intervention of any human agency, it can produce a new set of algorithms smarter than itself. And when these tools have acquired, as they have now, the faculty of unassisted reproduction, you have reached a point of no return where if man is not going to assert his control over machines, the machines are going to assert their control over man.

[….]

The problem is this. Since technological progress left to the mechanism of private property can lead only to high profits for a few, a high rate of employment for a few and to mass redundancies for the many.

[…]

Now I come to what we must do, and there are four things:

  1. We must produce more digitally trained engineers
  2. Once produced we must be more successful in keeping them in the industry
  3. We must make intelligent use of them
  4. We must organize the oil Industry so that it applies the results of their insights to the efficient production of hydrocarbons

[…..]

Relevant, also, to these problems are our plans for on-demand cyber training and MOOC’s (Massive Online Open Courses). These are designed to provide an opportunity to those who have not been trained in digital methods to do so with all that the internet and mobile technologies can offer.

[…..]

I have talked in other companies to ex oil-and-gas digital-workers who have left the industry. It is not so much a question salary; it is the poor valuation put on their work by our industries; the lack of interest in their work; and the inadequate provision of digital infrastructure and equipment. It is because in many cases in the Oil industry today, promotion of those versed in technological methods and their new ideas for ways-of-working are thwarted by middle management.

One message I hope this conference can send out, not only to those who are wondering whether to leave the industry or not, but to those who have already left is this: we want you to stay here. We want those of you who have left the industry to think about coming back, because the industry is going to need you.

[….]

The oil industry that is going to be forged in the white heat of this revolution will be no place for restrictive practices or for outdated methods on either side of IT or the Business. We shall need a totally new attitude to the problems of educating for changing working practices. If there is one thing where the traditional philosophy of capitalism breaks down it is in the training for digitalization, because quite frankly it does not pay any individual operator, unless it is very altruistic, quixotic or farsighted, to train the digital workers if it knows at the end they will be snapped up by some unscrupulous firm that makes no contribution to the training. That is what economists mean when they talk about the difference between marginal private cost and net social cost.

I’ll leave you to read the original and draw your own conclusions, I don’t agree with all the cut-and-thrust and pro-soviet views expressed but there are echoes from history that we ignore now at our peril.

Image Credit is from MI5. Oh, and if you like a good conspiracy theory have a look at the denials on MI5’s website about the alleged plot to bring down the Wilson government of 1974-76, and – interestingly – that George W Bush was head of the CIA (who knew? He kept that quiet). https://www.mi5.gov.uk/the-wilson-plot

 

 

Oil Companies Can’t Innovate?

I have just returned from two digital-operations conferences in Aberdeen. There was a common complaint among technology providers. They complained constantly that oil companies are slow to make decisions and don’t innovate (or specifically – buy their products). Some vendors even suggested that oil companies were 20 years behind the curve – that there are proven technologies available and in use in other industries that are yet to be deployed.

Of course, this is demonstrably wrong. Other than space and defence, I cannot name many other industries that can do something comparable to placing a drill bit 3KM into the earth in a water depth of 1KM with an accuracy of a few tens of meters. Engineers do this with real-time information from the drill-bit being beamed across the globe to operations centres thousands of miles away. That’s pretty amazing.

In truth – much engineering innovation comes from service companies rather than oil companies. Lots of technology and information processing is applied to exploration and drilling, a lot less in production-operations. The split in innovation from oil company to service company can be traced to decisions in the 1970’s and 80’s, the efficiencies and breakthroughs arose from companies such as Schlumberger, Gearheart and Atlas. However, the super majors such as Shell, BP and NOC’s (National Oil Companies)  like Aramco still undertake loads of research and have come up with solutions – such as polymers, de-ionised water for injection and their own seismic interpretation algorithms.

Still the point is valid – the 4th industrial revolution will mainly affect industrial operations. There is a distinction between operations within the business of oil-field services, and operations within the production of hydrocarbons. Both have the opportunity to become more efficient. Despite the opportunity, I’ve witnessed the complexity of buying and lack of progress in technology adoption within oil company operations, and it’s very frustrating.

I had a conversation with a senior exec at one of the new independents. I asked him why new ways of working were not being adopted.  His answer was very interesting. He told me that his team had just completed a new well on an old field. The well cost about £20m, took about 8 weeks from spud to completion, and was flowing at 3-5K BBl/day. It was simple, quick, contained, could be purchased as a work-package and was very much business as usual. No disruption to the organisation. That’s a return of more than 100% pa, a payback period of less than a year, and simple.

New technology implementation (the types of activity I was proposing) couldn’t promise that sort of percentage (or absolute) return, sounded complex and would – inevitably – require significant change to implement within the organisation. He had a point.

But that’s not an excuse. One day, and it may be soon, the sort of margins available on wells will disappear. There will be fields where the lifting cost exceeds the sale price for crude – but where there are still significant hydrocarbons left in the reservoir. In these situations, the impetus to reduce the cost of operations will be provided by the opportunities for profit. Somebody will be interested.

Look at what happened with shale in the USA. Fracking is not a new idea. The innovation of shale came from the combination of planning drainage patterns, drilling accurately, hooking up without interruption and – crucially – increasing the rate of development while dramatically reducing the per-well cost. Once this approach to development was established, it was game on.

When the big boys bought in – I was at BG we bought into Exco [link] – they didn’t come to the low-cost shale drillers and tell them to adopt the big-oil processes. The ponderous decision making and bureaucratic approvals required for $100m HTHP that takes 6 months to plan and drill, would have been impossible to handle the programme needed for a campaign of sub 100K 4-day wells required for shale.

It’s going to be the same again. With the late-life fields and new players, someone is going to figure a way to get the operating costs per barrel in a late-life field down below $10/Bbl and the big-boys are going take notice and learn.

The innovation required is going to come from low-cost technologies combined with an efficient operating model. Clay Christiansen in his book The Innovators Dilemma [Link  ]examined the disk drive industry and how the “big-oil” of storage were out competed by start-ups with sub-performance (but cheap) technology. Once a foot hold was established in the market – the performance of the new technology rapidly improved to the point where the big buyers switched. This left the previous big providers to decay into obscurity.

The North Sea oil industry was a pioneer in offshore development and much of the current techniques for long-reach directional drilling, FPSO and sub-sea originated there. With the business opportunity afforded to entrepreneurs by late-life field extensions, now is the time for innovation in how to operate cheaply. On-shore Middle East can produce oil sub $10 / Bbl the Offshore North Sea is $45. It’s time to innovate that gap away. (link):

(OK, I know the figures aren’t that simple due to capex and taxes but the principle stands!).

Image credit: https://jillwallace.com/vignettes/2017/11/8/pimple-on-the-ass-of-elephant

 

 

 

Digital disruption landscape for upstream oil and gas

I was recently asked by a client for assistance in examining how their business strategy might be affected by Digitalisation. This company is a mid-tier upstream operator with a mix of assets mostly non-operated but does have some where it is the duty-holder.

So I’ve propose the following five point map to classify where the disruption could occur in the upstream business. This helps to define not how, or when,  but where disruption is possible. This framework helped us examine what threats and opportunities are likely to emerge in each area and I thought I’d share.

Please feel free to comment and I will keep this updated  for the network.

Demand for Oil and Gas

  1. Digitalisation in the wider economy may affect the demand for energy through different transport usage, renewable control, demand management and micro-grids.

Access to Resources

  1. Access to operate resources may change as national owners find different partners to help them monetize geological wealth
  2. Opportunities to become a non-op partner may change as operators get more certain about their outcomes and require less diversification in their portfolios
  3. Competition for resources increases as development and production services become purchasable/tradeable activities
  4. Transparency of operation and methods to extract changes what is required to retain a license to operate
  5. Better techniques for collecting and interpreting data leads to more resources being found and better development pre-planning (westwood puts the commercial success rate at between 30% and 50% https://www.fircroft.com/blogs/less-drilling-more-success-the-state-of-exploration-drilling-so-far-in-71921114313 )

Development and Operation of Resources

  1. Digital planning and modelling combined with better logistics and manufacturing/construction techniques reduces the capital requirements for fields meaning lower barriers to entry
  2. High frequency low-cost drilling reduces the sunk-cost nature of investment, reduces cyclical volatility of supply/demand imbalances and hence expected return on capital
  3. Better information leads to increased recovery factors and ultimate value of assets. (Currently this is estimated to be below 40% http://www.spe.org/industry/increasing-hydrocarbon-recovery-factors.php )
  4. Better information, co-ordination and reduced waste leads to lower operating costs per hour of activity (for some bench marks check here https://knoema.com/rqaebad/cost-of-producing-a-barrel-of-crude-oil-by-country )
  5. Better prediction of failure and real-time optimization of fields leads to higher efficiency and hence accelerated cash-flow (currently 73% in North Sea https://www.ogauthority.co.uk/news-publications/news/2017/uk-oil-and-gas-production-efficiency-rises-to-73/)

Sale and transport of product

  1. Better information about the crude quality and refinery / other consumer plant configuration leads to higher yield / lower cost processing
  2. Information about the location of supply and demand enables better optimized transportation and reduced costs
  3. Better prediction of both future production and future demand enables balancing of both. This leads to changes in the premium available from trading and who captures it

Human elements

  1. Automation leads to different models for distribution of wealth among the middle classes (no longer based on work)
  2. Automation leads to people choosing to add creativity and seek challenges in different environments and under different conditions
  3. Changes to the working motivation scheme means modernization is required for operating model for Oil and Gas industry to attract talent

 

 

Image credit: https://www.pmfias.com/natural-gas-distribution-world-india-petroleum-gas-value-chain-upstream-midstream-downstream-sector

 

 

4th Wave Value – Upstream Oil and Gas

I’ve been engaged in several discussions recently on the benefits (or otherwise) of the 4th Industrial revolution [link] applied to oil and gas. I’ve decided to write a couple of pieces on this topic so I can refer to them with clients.

Technologies driving the revolution

I accept the WEF identification of the following general technologies that underpin the revolution:

  1. Wide-spread sensing of information
  2. Increased computing power, predictive models leading to increased understanding
  3. Artificial Intelligence leading to:
    1. Automation of actions
    2. Optimisation of whole systems
  4. Distributed, additive manufacturing

Benefits from the revolution

What will be the outcome of the 4th Industrial Revolution for upstream if we are successful?  Well there can only be three fundamental differences that can be made – I think we’ll get a combination of these:

  1. Per unit cost reduction in produced barrels
  2. Increased safety for the people involved in operations
  3. Decreased impact on the environment from activities

Items 2 & 3 tend to be driven on a compliance basis and form the requirements for permission to operate granted to companies by society using various methods of regulation, consumer pressure and protest. For my purposes I’ll assume that these are utilities [link] and that we always want more when there is no increase in cost, and that we’re unlikely to cut spending or trade down. Therefore, any cost-neutral improvement will be adopted and spending will only increase when it is mandated.

Driving down production costs

I am going to concentrate on the cost per unit production. This comes from the cost of capital used to find and develop a field, the cost to operate facilities, and provisions for decommissioning at end of life. As the owner-operator of an oil field there are distinct supply chains for each of four phases of life:

  1. Exploring, Finding and Appraising deposits of oil;
  2. Planning, Designing, Building and commissioning facilities to extract and transport it to market;
  3. Operating the facilities; and
  4. End of life decommissioning, facility disposal and restoration of the environment

Benefits for exploration

In the initial phase of oil field life I would say that we’ve already captured many of the benefits. Wide spread sensing and large computing power would be a great description of what happens with Seismic data, Geoscience earth-modelling and directional drilling.  I am sure that if I looked at the number of people employed and unit-cost of discovery of a deposit I would see a much more efficient scenario than we did in 1980. The figures are somewhat distorted on a cost-per-barrel basis as we have been finding smaller deposits (a feature of geology rather than our abilities).

Benefits for Development and Projects

In the field development phase, we have seen some ingress of new technologies – ROV, Subsea completions, dynamic positioning of FPSO’s and such has led to economically possible concepts for some small or hard-to-reach fields that we’ve found. Field and facility performance is more accurately understood through simulations and we’ve seen some benefits to designers from the use of CAD systems. There is still scope for development to reduce the cost and errors associated with Engineering, Procurement, Construction and Commissioning. There are few real-time feed-back loops here, or analysis of project simulations. The management of large capital projects is still a mine-field of risk, change orders, document control, cost-overruns and schedule blow-out. These are caused by fluctuations in the real-world vs. plan with late in-flight adjustments. More accurate planning, contingency, dependency management, construction order, logistics, pre-commissioning maintenance, start-up etc. would provide benefits.

Benefits for Operations

The revolution should be able to affect operational optimisation the most, this is an area almost untouched by the revolution so far. An OIM on a field from 1980 would recognise a lot of the technology (if not the work-practices) used today. The exception to this is the wide-scale adoption of communication meaning that the split between on-shore and off-shore is far less.

It is possible to argue that the 4th wave has enabled the shale revolution and that the operating practices from this type of development are fundamentally different to conventional offshore and on-shore fields. The operating margins are smaller, decline curves more dramatic and the constant drill-complete-operate cycle has forced change.

I may be controversial but I’d say a lot of the operational work-practice changes seen in the North Sea have majored on reducing manning offshore and increasing the safety of operations. I believe that, despite the vast increases in potential data, the fundamental way that information is gathered and acted upon has not changed much.

When I walk into a remote operations centre I see a lot of people collaborating with each other, lots of excel spreadsheets, cameras and discussion. Integrated planning and turn around planning are still being done off-line and I don’t see visibility of supply, logistics or automatic optimisation of these functions.

There is a conundrum here of course. The facilities that are in operation (and those still being commissioned) are not designed to harness 4th wave opportunities so we have (at least) two problems. Firstly we must retro-fit new concepts into facilities that will be with us for the next 30 years, and secondly we need to influence design and development so that this retro-fitting is no longer needed in the future.

Benefits for de-commissioning

It’s early days on the decommissioning front. I suspect that for operators the benefits will show up through normal procurement cycles. The smart profits are likely to accrue to those that can operate quickly and safely. Examples of clever automated technology are emerging – such as the self-levelling rams that lift whole top-sides fitted to the Pioneering Spirit [Link]

Next steps

With the current climate in Oil and Gas we’re seeing an increased interest in how to transform the operational environment and supply chain to drive out OPEX cost (development and exploration are of course now sunk [link)

Now I’ve set the context I’ll start to explore how an operator, or service company, can start to participate in these changes – what an operations business case will look like, what skills and approaches will be needed, what approaches are stopping innovation and what the risks are.

(Image source : http://ohioline.osu.edu/factsheet/cdfs-sed-2 )

You heard it here first folks…

I’m not normally known for left-leaning political judgement but – just in case you missed it the Scottish Government is being asked to consider a motion to fund public investment in the infrastructure of the North Sea.

“UK OIL would work with the Oil and Gas Authority to identify strategic assets that are potentially profitable. That would help to prevent platforms and pipelines being lost earlier than planned, and potentially help fund new ones for the future.

“We urgently need imaginative thinking like this now – otherwise the oil and gas sector could continue to decline due to lack of investment.”

Here’s the [link]

13 month’s ago this blog published an article which, amongst other points said:

To address this will require restructuring the way that the industry operates. If not outright nationalisation of parts of the network, this – at least – requires more control and probably limited subsidies. For goodness sake – we subsidise the tracks that our trains run on, I can’t see any argument for the creation of economic value there that does not apply to our North Sea processing and export network.

Here’s that [link]

 

 

Subsidy on the agenda?

Last year I suggested that there were strategic reasons to maintain North Sea production. The system of interconnected assets and their cross-reliance on each other means that it will be in the common good for “UK PLC” to maintain key infrastructure despite it being a poor proposition for individual operators.

For goodness sake – we subsidise the tracks that our trains run on, I can’t see any argument for the creation of economic value there that does not apply to our North Sea processing and export network. [Link]

So I was heartened to see that David Cameron is in Aberdeen with what the FT called an emergency investment package. I was less pleased to see what the promised £250m investment was to be spent on:

The prime minister will promise a new “oil and gas technology centre” in Aberdeen to fund future research, including into innovative ways to extract oil and gas.

The package will also help expand the harbour and support the city’s pharmaceutical and agri-food industries to try to help Aberdeen diversify from its reliance on oil and gas. [Link]

Well that’s not exactly the response I was thinking about – seems to be a rather poor investment case for UK PLC. Luckily we’ve formed another task force.

His visit coincides with the first meeting of a new task force of senior ministers set up to deal with the issue, chaired by Amber Rudd, energy secretary. The group will include Anna Soubry, business minister, and David Mundell, the Scotland secretary.

Together with the OGA there seems to be plenty of civil servants looking at the issue.

True to form – the FT actually got to the nub of the issue with its parting shot:

Many in the industry are also urging George Osborne, the chancellor, to relax the rules around who pays to decommission oil platforms when they reach the end of their lifespan. Many argue that the strict laws making anybody who has ever owned a particular platform potentially liable for its eventual dismantling are discouraging companies from buying up ageing assets and investing in them.

One energy banker said: “One of the things that could really help is if we see more takeover activity, with companies buying either struggling rivals or older rigs.”But the main thing stopping that right now is that nobody wants to take on potentially massive decommissioning liabilities.”

The BBC covers his visit here [Link]

Despite the decline in oil prices there is risk capital available but to take this opportunity irequires a few critical pivots. They are:

  1. Decommissioning liabilities stopping the trade in assets to lower-cost operators
  2. Un-certainty surrounding enabling infrastructure operated by others
  3. Mis-alignment of interests between partners meaning operating committees stopping development plans

Perhaps rather than expanding Aberdeen Harbour we could change the rules and use this £250m to help sort these out? At least it would be a start.

What do you think, is the proposed disbursement the best use of the money?

Collaboration reduces costs?

There has been a lot of hand-wringing around collaboration recently. For instance Paul Goodfellow Manager of UK Upstream at Shell said companies working in the North Sea need to learn from other industries on how to work together [Link]. Quite which industries he is talking about I’m not sure, also I am not sure what type of collaboration he’s looking for.

Worryingly for me there seems to be a focus on input costs. For instance one quote in the article stands out: “work with the supply chain on how to collaborate and get common purpose whilst driving waste from the system and driving unit costs down”.

When I analyse situations like this with clients I encourage them to take a view on both industry and supply chain, and be clear about the distinction. In Shell’s case their industry consists of other oil and gas operators. MMO companies, Scaffolding providers, helicopter operators and a myriad of other companies are part of the supply chain. They belong their own set of industries. Of course many companies supply services in more than one industry – so I need to consider them both in relation to their “competitors” and their own internal structure.

Here are three ways that cost can be removed:

  1. Industry collaboration between operators – to increase standardisation or share resources
  2. Adoption of new technology and methods
  3. Drive new processes to reduce unnecessary steps

These actions can increase efficiency which I define as the ratio of units of output to units of input. Assuming that output remains constant then efficiency comes from reducing system costs by removing labour or materials. This will increase the profit available for distribution among companies within the supply chain.

Reducing costs within the supply chain does not necessarily mean that Shell will see their input prices reduce – the location in the value-chain where profits are captured is subject to other factors. One model to explain how profit is captured was described by Michael Porter [Link]. Supply chain collaboration is, of course, important to organisations such as Achilles backed by my friends at Hg Capital [Link]. They set out some of their views on the issue here [Link].

In a commodity industry – like crude Oil and Gas production – there is little that producers such as Shell can do to change the selling price of their product (of course OPEC might have a different opinion [Link]). To protect profits producers need to reduce cost. At the moment operators seem to be forming committees to squeeze the supply chain. They are also laying off employees to cut overhead. I don’t see any action from Operators to collaborate with each other to reduce their own structural costs. Claims that they are seem to be a joint-ganging-up to encourage the supply chain to collaborate and reduce prices. That’s different.

Oil and Gas UK have stated that the North Sea needs to reduce costs by 40% within 5 Years or face very tough times indeed. Stephen Marcos Jones, Oil & Gas UK’s business development director, said: “Companies are having to make tough decisions on their capacity during the downturn and are individually taking measures to improve efficiency. However, co-operative working across the industry … can also help deliver the cost and efficiency improvements required to secure a long-term future for the UKCS.” [Link]

This quote from the Shell article highlights the inefficiency in buying within a single operator:

One very enterprising supplier came forward and said we’ve got a great piece of quick erecting scaffolding, but we don’t understand why you haven’t been picking it up. The reason was because they were trying to work at various front-line levels of the organisation and it wasn’t important to one individual, because they didn’t know the totality of what we were spending on that service. When they came in through the strategic contracting team and demonstrated to the facility managers and made the decision there and then and we’re in the process of deploying it across every facility and rig we have in the UK sector.”

I feel this is an example of an operator missing new technologies due to their internal bureaucracy and inefficiency. My clients can tell me about literally hundreds of examples of this type of behaviour. The reality of course is more complex. When I ran the technology investment process at a major operator I found that the cost (and risk) of scaled change was such that it can easily outweigh the demonstrable benefits delivered from a new technology. Therefore this type of change can be slow and the results can be counter intuitive.

So in summary to drive out costs we must answer the following:

  1. What time scale and magnitude do we need to work to (some are long-term structural and will take many years to deliver, other are tactical and can reduce Op-Costs quickly)
  2. What can we do to reduce the cost within the supply chain, and how will we ensure that those costs flow to the prices we are charged?
  3. What can we do to reduce costs within our industry by collaboration and standardisation
  4. What can we do to reduce our individual costs by simplifying what we do, eliminate unneeded activity and increase work-rates?

Of course, as you would expect, the professional services firms have opinions on this. Their approach and advice is nuanced and reflects many of the same themes. Some of what they are thinking can be found here: PWC [Link], Deloitte [Link] and [Link], EY [Link], Bain [Link] and KPMG [Link].

Incidentally the word-cloud image at the top of this post contains many of the words I’d expect to elicit from a group of oil executives. It comes from VOTE – an organisation based in New Orleans – the Voice of the Ex-Offender. It is a grassroots, membership based organization founded and run by Formerly Incarcerated Persons (FIPs) in partnership with allies dedicated to ending the disenfranchisement and discrimination against of FIPs. [Link]. Goes to show that many of the issues that surround collaboration are human ones and not things specific to our industry.