Frameworks for Digitalisation – Part 1
I’ve been working on frameworks that help me describe concepts around Digitalisation in upstream oil and gas. I plan to publish these in several formats but so far I’ve been too busy to do this to my satisfaction – so I’m going to put them out here for comment and then work them up as packaged tools.
This first framework – five digital vectors – is designed to set the context for the strategic intent of a digitalisation initiative. This is important because senior management had better know why they are embarking on programme of change, what they expect to get from it and where threats to it will come from.
I was recently talking to the CEO of a multinational engineering consultancy based in Norway. To slightly protect his identity, I’ll call him Egil.
Egil: “Gareth, you know [insert Big 4 consultancy here] was just in my office telling me that digitalisation was going to radically alter my business. They said just look what NetFlix did for the video store. It must be important or they wouldn’t be here. But I’m busy and, frankly, I don’t get it”.
Communicating strategic intent is important. I am as guilty as anybody about trotting out tired lines about how digitalisation will disrupt industries and then helpfully pointing out that Uber has no cars, AirBNB no property and Amazon no shops. This may be intriguing but it’s no longer precisely true (as all three are busy making strategic bets in traditional assets), and it’s of very little help if you’re in Oil and Gas wondering how this applies to your business.
Using this Five Digital Vectors framework provides a way to classify the objectives of an initiative, how innovation in the area may cause competitive shifts and explain where to look in order to measure success. There are Five main vectors for digitalisation. They are:
- Pure Digital
- Digitally Enhanced Products and Services
- Digitally Efficient Operations
- Digitally Effective Supply Chain
- Digital License to Operate
I’ll explain a little about each of these, and then hopefully you’ll get the idea. If you take each in turn you can look for potential disrupters and initiatives and decouple them. Some of these will be more likely to impact your business than others. At least now you can decide which few to concentrate on first.
Vector 1: Pure Digital
Pure Digital strategies work when a product can be codified as information. Think Music, E-books, Films. Once the physical product is removed massive scale economies accrue to storage and distribution. What is called “long-tail” economics kicks in around inventory and specialisation, customisation and choice. In Oil and Gas, we may see some spare parts digitised, emailed and then 3D printed on-site. This will reduce carrying costs and delays. We may also see pure information products trade more freely (such as production forecasting, planning, sub-surface models, training data sets and educated machine-learning algorithms).
Vector 2: Digitally Enhanced Products and Services
Digitally enhanced strategies arise when the fundamental “product” becomes augmented with information. For instance, Uber generates a fair portion of its demand not only on price, but also because it provides information about where the cars are, when they will arrive, the route they take and the price you will pay. They then ease the transaction by collecting payment and supplying receipts. However, all the digitalisation in the world will be useless without the underlying physical product (in this case, a car to take you home). In upstream oil and gas we may see that a supplier of products such as spare parts, services or even crude oil become a preferred option when they supply accompanying information before their wares arrive and when they keep you informed while they are in service.
Vector 3: Digitally Efficient Operations
In oil and gas this is the area where I am witnessing most digitalisation activity.
Using information within your own business to reduce waste and increase accuracy is hardly a new idea, but digitalisation changes the game. As more information becomes available – because of better connections, more sensors and accumulated history – so it becomes possible to change the way you do things. Prioritisation, scheduling, just-in-time: these concepts work better when you can access more information and use it sensibly. Today’s engineers entering the workplace can probably not remember a world that didn’t have an iPhone and Google (Google is almost 20 years old). So, they are used to being able to think of a question and get an answer quickly. If you can harness this creative real-time problem-solving ability (by making information available) you can improve your operations.
Vector 4: Digitally Effective Supply Chain
Both vertically and horizontally there is potential to add value through more efficient exchange. The digitally efficient operation strategy will reduce the waste and hence cost within a single company (see Porter on what it will do for price). Supply chain strategies focus on removing friction between companies so inter-company waste will also reduce. This is, in many ways, a move from Digitally Efficient Operations to Digitally Efficient Industry. It is about expanding the focus from the individual company to the collection of companies.
For this to work requires standards, data compatibility and platforms where buyers and sellers can transact. Some suppliers (think about a stationery company) will supply various industries – say automotive and oil and gas. So eventually some standards will need to be cross industry, whereas others (say for drilling services) won’t be. Though the benefits can be large, there are two main problems: co-ordination of participants; and allocation of cost and benefit.
Vector 5: Digital License to Operate
This is an interesting insight that came to me when I was discussing the apocryphal case of a town inviting bids from contractors to build a pipeline through it. One bidder offered to expose in real time the contents of the pipe, the corrosion status, inspection procedures and compliance, the leaks and seeps and other such. The other company claimed it was confidential. Guess who got the permission to build.
Whether the information was confidential or whether the quality of it and how to access it was suspect, I don’t know. But we see similar exposure of operational data for services such as trains and busses through simple APIs. This data is then “mashed up” by active citizens for public good to help people plan journeys or avoid breakdowns.
In the future, perhaps it will be a requirement of regulators that operational, safety and environmental data is made available to the public in real-time, if not – then you won’t be allowed to operate your field. Once that data’s out there you can expect to be held to account for your actions. Welcome to CSR in Industry 4.0.
Summary
The five vectors described here help to provide a primary direction for an initiative. For maximum impact, like all good vector mathematics, the magnitude of value delivered will increase as the direction of the vectors align. This tool helps to focus the mind on the primary vector and provides insights to the effect on the others to enable informed choices to be made.
As always, email me direct or leave comments here and I’ll do my best to respond.
Image credit http://www.kimonmatara.com/vector_ops/